AVALIAÇÃO E TESTE DO EXOESQUELETO EM UMA LINHA DE MONTAGEM
ASSESSMENT AND TESTING OF THE EXOSKELETON ON AN ASSEMBLY LINE
EVALUACIÓN Y PRUEBA DEL EXOESQUELETO EN UNO LÍNEA EN ASAMBLEA
Maria Victoria Cabrera Aguilera, Bernardo Bastos da Fonseca, Paula Carvalho Monetto, João Marcos Viana de Quadros Bittencourt
Resumo
Este trabalho apresenta um estudo inicial para avaliar e testar um exoesqueleto passivo para membros superiores em uma linha de produção automotiva. Os testes foram realizados na área da pintura e de montagem durante um dia de produção e nos dois turnos de trabalho com a participação de diferentes setores da empresa. Ao todo, sete operadores participaram dos testes e seis postos de trabalho foram avaliados. Observou-se que em ambas as áreas, o uso do exoesqueleto não apresentou alteração no tempo ciclo das atividades executadas pelos operadores. Nas atividades que exigem sustentação dos membros superiores, o exoesqueleto se mostra mais favorável. Porém, nas atividades nas quais o operador necessita abaixar e elevar os braços diversas vezes ao longo do ciclo de trabalho, o equipamento se mostra desfavorável, pois o operador encontra resistência para abaixar o braço. É necessário aprofundar os estudos com outros modelos de exoesqueleto existentes no mercado e realizar testes com maior tempo de duração.
Palavras-chave
Abstract
This work presents an initial study to evaluate and test a passive exoskeleton for upper limbs in an automotive production line. The tests were carried out at the painting area and at the assembly area during a day of production compound of two work shifts with the participation of different sectors of the company. A total of seven operators participated in the test and six workstations were evaluated. It was observed that in both areas, the use of the exoskeleton did not change the cycle time of the activities performed by the operators. In activities where the operator needs to maintain the arms raised, the exoskeleton is more favorable. However, in activities where the operator needs to lower and raise the arms several times during the work cycle, the equipment is unfavorable, because the operator finds resistance to lower the arms. It is necessary to deepen the studies with other exoskeleton models available on the market and carry out tests with a longer duration.
Translated version DOI: https://doi.org/10.4322/rea.v13i2.28.en
Keywords
Resumen
Este trabajo presenta un estudio inicial para evaluar y probar un exoesqueleto pasivo para miembros superiores en una línea en producción automotriz. Las pruebas se realizaron en área desde el cuadro Es en asamblea durante uno día en producción Es a nosotros dos turnos en trabajar con la participación de diferentes sectores de la empresa. En total, siete operadores participaron en el Se evaluaron pruebas y seis puestos de trabajo. Se observó que en ambas áreas el uso de exoesqueleto No presentado cambiar en el tiempo ciclo de Actividades ejecutado por el operadores. en actividades que requieren apoyo de las extremidades superiores, el exoesqueleto parece más favorable. Sin embargo, en actividades en las que el operador necesita bajar y levanta los brazos varias veces durante el ciclo de trabajo, el equipo aparece desfavorable, entonces oh operador encuentra resistencia para más bajo oh brazo. Y necesario profundizar estudios con otros modelos de exoesqueletos del mercado y realizar pruebas con mayor tiempo en duración.
DOI de la versión traducida: https://doi.org/10.4322/rea.v13i2.28.es
Palabras clave
References
de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O’Sullivan, L. W. (2015). Exoskeletons for industrial application and their potential effects on physical workload. Ergonomics, 59(5), 671-681.
Grieve, J. R., & Dickerson, C. R. (2018). Overhead work: Identification of evidence-based exposure guidelines. Occupational Ergonomics, 8(1), 53-66.
Jonassen, D. H., Tessmer, M., & Hannum, W. H. (1999). Task analysis methods for instructional design. Routledge.
Karvouniari, A., Michalos, G., Dimitropoulos, N., & Makris, S. (2018). An approach for exoskeleton integration in manufacturing lines using Virtual Reality techniques. In 6th CIRP Global Web Conference, Procedia CIRP, 78, 103-108.
Kim, S., Nussbaum, M. A., Esfahani, M. I. M., Alemi, M. M., Alabdulkarim, S., & Rashedi, E. (2018). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I – “Expected” effects on discomfort, shoulder muscle activity, and work task performance. Applied Ergonomics, 70, 315-322.
Kirwan, B., & Ainsworth, L. K. (1992). A guide to task analysis. Taylor & Francis.
Lee, H., Wanson, K., Han, J., & Changsoo, H. (2012). The technical trend of the exoskeleton robot system for human power assistance. International Journal of Precision Engineering and Manufacturing, 12(8), 1491-1497.
Lo, H. S., & Xie, S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: State of the art and future prospects. Medical Engineering & Physics, 34(3), 261-268.
Nordander, C., Hansson, G., Ohlsson, K., Arvidsson, I., Balogh, I., Strömberg, U., Rittner, R., & Skerfving, S. (2016). Exposure-response relationships for work-related neck and shoulder musculoskeletal disorders: Analyses of pooled uniform data sets. Applied Ergonomics, 55, 70-84.
Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., & Cavatorta, M. P. (2017). Investigation into the applicability of a passive upper-limb exoskeleton in automotive industry. In 27th International Conference on Flexible Automation and Intelligent Manufacturing, Procedia Manufacturing, 11, 1255-1262. Italy.
Sylla, N., Bonnet, V., Colledani, F., & Fraisse, P. (2014). Ergonomic contribution of ABLE exoskeleton in automotive industry. International Journal of Industrial Ergonomics, 44, 475-481.